Switch to DNN face detection
Haar Cascades can still be used by passing the "--haar-cascade" option.
This commit is contained in:
parent
f72c81b79b
commit
625e9680d3
1790
cvdata/deploy.prototxt
Normal file
1790
cvdata/deploy.prototxt
Normal file
File diff suppressed because it is too large
Load diff
BIN
cvdata/res10_300x300_ssd_iter_140000_fp16.caffemodel
Normal file
BIN
cvdata/res10_300x300_ssd_iter_140000_fp16.caffemodel
Normal file
Binary file not shown.
50
src/cv.cpp
50
src/cv.cpp
|
@ -7,13 +7,19 @@
|
|||
#include <paths.hpp>
|
||||
|
||||
cv::Ptr<cv::face::Facemark> facemark;
|
||||
cv::CascadeClassifier faceDetector;
|
||||
cv::CascadeClassifier haarFaceDetector;
|
||||
cv::dnn::Net dnnFaceDetector;
|
||||
cv::VideoCapture vid;
|
||||
cv::Mat frame, gray, small;
|
||||
bool useHaar;
|
||||
|
||||
void initCV() {
|
||||
//TODO: switch to DNN face detection
|
||||
faceDetector = cv::CascadeClassifier (resolvePath("cvdata/haarcascade_frontalface_alt2.xml"));
|
||||
void initCV(bool haar) {
|
||||
useHaar = haar;
|
||||
|
||||
haarFaceDetector = cv::CascadeClassifier (resolvePath("cvdata/haarcascade_frontalface_alt2.xml"));
|
||||
dnnFaceDetector = cv::dnn::readNetFromCaffe(
|
||||
resolvePath("cvdata/deploy.prototxt"),
|
||||
resolvePath("cvdata/res10_300x300_ssd_iter_140000_fp16.caffemodel") );
|
||||
|
||||
facemark = cv::face::FacemarkLBF::create();
|
||||
facemark->loadModel (resolvePath("cvdata/lbfmodel.yaml"));
|
||||
|
@ -21,24 +27,56 @@ void initCV() {
|
|||
vid = cv::VideoCapture (0);
|
||||
}
|
||||
|
||||
void dnnFaceDetect(cv::Mat inFrame, std::vector<cv::Rect>* faces) {
|
||||
cv::Mat inputBlob = cv::dnn::blobFromImage(inFrame, 1.0f, cv::Size(300, 300), cv::Scalar(104, 177, 123, 0), false, false);
|
||||
|
||||
dnnFaceDetector.setInput(inputBlob, "data");
|
||||
cv::Mat output = dnnFaceDetector.forward("detection_out");
|
||||
cv::Mat detection(output.size[2], output.size[3], CV_32F, output.ptr<float>());
|
||||
|
||||
for (int i = 0; i < detection.rows; i++) {
|
||||
float confidence = detection.at<float>(i, 2);
|
||||
|
||||
if (confidence > 0.75f) {
|
||||
int x1 = detection.at<float>(i, 3) * inFrame.cols;
|
||||
int y1 = detection.at<float>(i, 4) * inFrame.rows;
|
||||
int x2 = detection.at<float>(i, 5) * inFrame.cols;
|
||||
int y2 = detection.at<float>(i, 6) * inFrame.rows;
|
||||
|
||||
cv::Point2f pt1(x1, y1);
|
||||
cv::Point2f pt2(x2, y2);
|
||||
|
||||
faces->push_back(cv::Rect(pt1, pt2));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//process image and send controls to graphics
|
||||
void cvFrame() {
|
||||
vid.read(frame);
|
||||
|
||||
cv::cvtColor (frame, gray, cv::COLOR_BGR2GRAY);
|
||||
|
||||
std::vector<cv::Rect> faces;
|
||||
|
||||
if (useHaar) {
|
||||
//downsample image for face detection, works too slow on full res
|
||||
cv::pyrDown (gray, small);
|
||||
cv::pyrDown (small, small);
|
||||
|
||||
std::vector<cv::Rect> faces;
|
||||
faceDetector.detectMultiScale(small, faces);
|
||||
haarFaceDetector.detectMultiScale(small, faces);
|
||||
} else {
|
||||
dnnFaceDetect(frame, &faces);
|
||||
}
|
||||
|
||||
//get biggest face
|
||||
int biggestFace = 0;
|
||||
int biggestArea = 0;
|
||||
for (int i = 0; i < faces.size(); i++) {
|
||||
//convert face region to full res, because we perform facemark on full res
|
||||
if (useHaar) {
|
||||
faces[i] = cv::Rect (faces[i].x * 4, faces[i].y * 4, faces[i].width * 4, faces[i].height * 4);
|
||||
}
|
||||
|
||||
int iArea = faces[i].area();
|
||||
if (iArea > biggestArea) {
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
#ifndef CV_HPP
|
||||
#define CV_HPP
|
||||
|
||||
void initCV();
|
||||
void initCV(bool haar);
|
||||
|
||||
void cvFrame();
|
||||
|
||||
|
|
|
@ -3,8 +3,9 @@
|
|||
#include <paths.hpp>
|
||||
|
||||
#include <iostream>
|
||||
#include <cstring>
|
||||
|
||||
int main () {
|
||||
int main (int argc, char** argv) {
|
||||
std::cout << "Facecam2D is starting..." << std::endl;
|
||||
|
||||
initPrefixes();
|
||||
|
@ -12,7 +13,8 @@ int main () {
|
|||
std::cout << "Default asset prefix: " << prefixDefault << std::endl;
|
||||
|
||||
initGraphics();
|
||||
initCV();
|
||||
//TODO: real argument parsing
|
||||
initCV(argc > 1 && strcmp(argv[1], "--haar-cascade") == 0);
|
||||
|
||||
while (true) {
|
||||
cvFrame();
|
||||
|
|
Loading…
Reference in a new issue